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Abstract measurement vector. Quantities, which do not depend on
the choice of origin in measurement space, remain invari-
ant under translation. For convenience, we choose the ref-
grence such thgt) = 0, where(. . .) denotes the ensemble

In manyapplicationsijt is desirableto reducethe num-
ber of color and texture features to a sufficient minimum.
Computational complexity and storage cost are some of th :
np piexity and g .average over the sdt;}. The variance of data sgt;}
obvious reasons for this requirement. A related reason is . A
S along a unit vectok is given by
that although two features may carry good discriminatory
information when treated separately, there is little gain if 2 _ <(§Tx)2) (1)
they are combined together in a feature vector, because of
a possible high mutual correlation between them. ThusEquation (1) can be written as
complexity increases without much gain. The major task ) .
of this paper is to address the problem of selecting the most oy =x Cx (2)
important features for a given textured colorimage so as to . : . .
b g g whereC = (¢£7). C is a symmetric and positive semi-

maintain the optimal number of color and texture charac-, .. . \ .
teristics P definite matrix™. All eigawvalues of C are real and non-

The basic approach explored in this paper is based 0negatlve, and its eigenvectors can be taken as orthogonal.

o I I -
the discrete Karhunen-Loéve Transform (KLT). The rea-Eet {e®} be the orthon;)rmal basis formeq by the eigen
: : vectors ofC such thate® corresponds to eigenvalue®.
son behind the selection of KLT-based texture and color, . . .
. . Suppose we take the eigenvalues to be in decreasing order
features is that an appropriately chosen transform can ex-
ploit and remove information redundancies, which usually Al> 2> . >N A3)
exist in a wide range of color and texture scenes obtained -~
by measuring devices. If the transform chosen is subjectedthere N denotes dimension of the raw data set. The vari-
to appropriate constraints, maximum information can beances2 can be decomposed along the eigenvectors
preserved in the output with reduced dimension, and with- . .
out nuances that do not exist in the original input samples. oL =) Mz, (4)
This is crucial if any subsequent feature-analyzing func- o
tion is to be able to produce meaningful results. Another,

X  ~wherez,, is the component ot alonge®. By the chosen
reason is that KLT seems closely related to early visual yar in equation (3), we have

pathway of primates.
o= Azt <A a2l = (5)
1. Introduction o o

11 Karh Lodve Transf for all unit vectorsx. The unconstrained maximum &f
-+ farhunen-L.oeve lransiorm on the/NV-dimensional unit sphere is equal to the maximum

Karhunen-locwe T_fa”Sf‘?'m_ IS, In a sensea linear filter eigenvalue X') and occurs when we choose = +1 and
whose response is optimized with respect to some perfob- f

. . for all other components.¢., x = e!). If we constraink
mance measure in measurement Space. C_on5|der a Settc?lie in the subspace perpendiculaetg thenz; = 0 and
physical measurementg; }, where¢; is an instance of

o= A, <N 2l =N (6)

“Note that this techniqe has been given differert names empirical a>1 a>1
orthogona functiors, principal componehanalyss, singula value de-
compositim, leag squaes method, factar analysi, and matche filter- Proof: For any vectox, xTCx = xT(£¢T)x = (xT¢¢Tx) =

ing. ((¢Tx)?) > 0.
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Themaximum ofo2 is A? and occurs whem, = +1 and  original images from VisTex are shown in the top-left posi-

0 for all other components.é., x = e?). By following this  tion, while the KLT-based orthogonal channels are shown
induction process, we obtain a decomposition of the dat&n the top-right, bottom-left, and bottom-right positions in
spae using linear filters* tha form an orthogonhbassset  order of decreasing eigenvalues. The KLT-based channels
and that account for as much as possible the variance of Fig. 1-4 have been normalized to 8-bit grayscale in or-

the data set. der to display the spatial variation in each channel clearly,
as suggested by [8]. Fig. 5-8 show how the KLT-based

1.2 Early Visua Pathway and Karhunen-L oéve channels in Fig. 1-4 would have been like in the original

Transform RGB channels. The eigenvectors and eigenvalues of the

Primate visual information processing occurs in multipleKLT-based channels in Fig. 1-4 are computed as follows:
stages of increasing abstraction starting from low-level sig{&) Fig. 1: [ 0.5090 0.5308 0.6776 ] (3328.2), [ -0.7666
nal processing to various high-level cognitive behaviors. [70-0784 0.6373] (399.6), [ 0.3914 -0.8438 0.3671] (15.7);
this section, we present a simple description on the earl{0) Fig. 2: [ 0.6196 0.5594 0.5506 ] (6401.5), [ -0.6878
stage of primate visual pathway and explain its close con9-0489 0.7243](55.5), [ 0.3783 -0.8274 0.4151 ] (4.6); (c)
nection to KLT. Fig. 3:[0.7418 0.5835 0.3306 ] (4670.1), [-0.4670 0.0956

Visual image processing begins in a region cattgiha 0.8791](98.0),[0.4814-0.8065 0.3434 ] (4.6); (d) Fig. 4:
located at the back of the eye. The retina has an orderl%o-7753 0.5319 0.3405] (773.9), [ -0.5596 0.3287 0.7608
layered anatomical arrangement with the foremost laye (76.5),[0.2928 -0.7804 0.5525 ] (7.1).
lined with photoreceptors sensitive to light. The human  The eigenvectors corresponding to the largest eigenval-
retina contains two types of photoreceptomsdsandcones ~ UES have responses with the same sign. Their convolutions
Unlike most neurons, rods and cones do not fire action powith the original images produce grayscale images which
tentials [3]. Instead, their responses are the graded changB&eserve most of the original information, as can readily
in membrane potentials. Color vision is mediated by thred®@ seen from Fig. 1-4. The rest of the eigenvectors exhibit
types of cones each differentiated by a visual pigment tha$0me sort of antagonistic pair(s) (at least one) so that the
is more sensitive to a different part of the visible spectrum €arly primate visual pathway may very well perform some
It has been found experimentally that individual cones coniransformation that resembles KLT.
tain only one type of the three pigments. One pigment Linsker [5] proposed a self-organization model in the
type is primarily sensitive to long wavelengths in the vis- Primate visual pathway using a versiontdébbianlearn-
ible spectrum and makes a strong contribution to the pering in alayerednetwork. Mathematically, he showed the
ception of red. Another is selective for middle wavelengthsconnection between Hebbian learning in a layered archi-
and makes a strong contribution to the perception of greefiecture, KLT, and the maximum Shannon information. A
The third is responsive to short wavelengths and makes 8ummary of his work can be found in [6].
strong contribution to the perception of blue.

The middle layer contains interneurons Whigh relay the 2. Spatial Texture Features
photoreceptor outputs to the output neurons in the third
Iayfar. The output neurons converge upon the 9pt|c NeNVRs discussed in the previous section, primate visual per-
which enters the brain for higher order processing stageggiion is a complex process that involves multiple stages.
The neurons in the middle and third layer are composed Qe paye presented a simple biological description of early
cells W'th a_cent_er-su_rround rec,ep,“"e field which forms MNisyal pathway and showed its close connection to KLT.
antagonistic pair. This antagonistic arrangement gives thﬁ"he output from the retina will undergo further processing

cell the performance of responding strongly to COmras“n%tages in specialized regions of the brain to compute more

signals (e, z.e.ro—crossmgs). . sophisticated features. The most ubiquitous of these are
_ Incolorvision, the antagonistic center-surround reCePperhang spatial and temporal textures. The ability to rec-
tive field is responsible for the color—opp.onentneuralichan—ogniZe these features underlies many important cognitive
nels: red-green, yellow-blue, and white-black. Similaryepayiors such as object recognition and motion detection.
channels are observed when we apply KLT to a few imagegyq, o these abilities arise from the simple quasi-linear
from theVisTexDatabase [4], as indicated by the signs of o5 onse of the retina and the subsequent non-linear trans-

. S a8 ; ) _ _ : cal
the eigevecta componergin Fig. 1-4°. InFig. 1-4, the  tormations in the rest of the visual pathway? This is an
area which the authors are still investigating and results

#The eigenvector components correspond to impulse response coewill be reported in the future.
ficients of a typicalV-th order moving average model whose output is For our present purpose, we emp|0y Haralick’s method
simply the convolution of the response coefficients with the input data. of co-occurrence [1] which ,bears certain psychophysical

$The original images are all of size8 x 128 with 8 bits/R,G,B but L .
have been reduced in size fourfold for illustration purposes. significance. In the co-occurrence method, the relative fre-
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guenciesof gray-level pairs of pixels at certain relative Table 1:Mean Color Feature

displacements are computed and stored in a matrooof | # | 001 | 001, 002 | 0024 003 | 003, 004 | 004,
occurrenceP. For N, gray-levels in the image, the co- | R | 117| 119 124 124 132 129 | 115 115
occurrence matrix will be of siz&, x N,. If N,islarge | G | 148| 147|110} 112| 106 | 106 | 102| 103
compared to the image size, the number of pixel pairs con-B_ | 185] 180 | 101| 104 | 75 | 77 | 95 | 96

tributing to each element;; in P will be statistically in-  1gpje 2:Angular Second Moment Feature (0~2)
significant as well as computationally expensive. On the 3sml 001 001, 002 | 002, 003 | 003,] 004 | 004,
other hand, ifV, is small compared to image size, most 1,0 | 29.3] 4.04] 4.42| 2.92 6.09] 3.09] 7.35| 3.93
of the texture information will be averaged out. Ohanian | =

and Dubes [2] reported thdf, = 8 was an appropriate 1% g;g jgé ggg ggi ggé 21‘21 222 ggg
choice for images of siz&2x 32. As suggested by other re- 3n

searches [7], the combination of the nearest neighbor pairs—* 27.5 4.00] 4.24 2'8424'91 2.98) 5.01] 393
at orientationd), =, T, and 3= are used in computing the Table 3:Contrast Feature{10~")
texture features. Haralick [1] suggested 14 texture featurg<LOn | 001 | 001, 002 | 002, 003 | 003, 004 | 004,
based on the co-occurrence matrix. The four most widely 1+ 0 | 49.5| 261 | 206 | 351 215 348 86.4) 337
used features are angular second moment (asm), contrade 4 | 824 267 | 248 | 384 152 320 | 211 354
(con), correlation (cor), and entropy (ent) as given by thaiv 7. 54.8| 261 | 140 | 316| 179| 330 | 165 350

following definitions , 3 82.3| 271 | 244 | 384 | 363 | 424 | 217 | 354
N1 N1 Table 4:Correlation Featurex10~2)
I cor [ 001 | 001,] 002 | 002,] 003 | 003,] 004 | 004,
asm= 3> > Pl (") 17,0 [89.4] 36.1] 62.5/ 38.6| 61.5/ 34.1] 80.8| 13.2
=0 =0 1,7 | 82.3| 34.7| 54.8) 32.9| 72.7| 39.2| 53.1| 8.7
Nyo1 1,2 | 88.2 36.0| 74.5| 44.7| 69.6| 37.3| 63.4 9.7
con=Y"n 3 py 8 | 1.3 823 33.7| 55.6) 32.8 34.8 19.6 51.9| 8.5
n=0  li—jl=n Table 5:Entropy Feature
NymIN 1) (o) ent | 001 | 001,] 002 | 002,] 003 | 003,] 004 | 004,
cor=Y i i Pj © | 1,0 | 283 4.98[ 4.97| 5.40 4.61] 5.32 4.32/ 5.01
= = 020y 1,7 | 3.03 4.99| 5.08 5.43| 4.55| 5.29| 4.82| 5.02
NN 1,3 | 291 4.98 474 5.35 454 530/ 4.61/ 5.02
e 1, 3r| 3.05| 4.99| 5.05| 5.43| 4.80| 5.37| 4.84| 5.02
ent = — pij log pij (10) +
i=0 j=0

wheres,, o, are the standard deviations corresponding to

the distributions 4. Discussion

Ng—1
pl(“f) - Z pij (11)  Inthis paper, we have presented a KLT-based optimal color
=0 feature generation method using Haralick's co-occurrence
method. In our simulation of four images, it appears that
) Ng—1 there is a close connection between the early stages of the
P = > pij (12)  primate visual pathway and the KLT method. A 3-layered
i=0 computational model seems to be an appropriate approxi-
mation to the primate visual pathway. Development of this
3. Numerical Results model remains one of the primary focuses of our future re-
search work. Use of the extracted color features for texture

We label the four original images as shown in Fig. 1-4 asand shape recognition requires further investigation.
001-004 respectively. The subscriptorresponds to the

same image contaminated by 64% Gaussian white noise.

Tables 1 through 5 summarize the numerical values of the 5. Acknowledgement
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Figure 1. Image Ground\aterCity.0002.pmfrom VisTex. Figure5. KLT-basel channes of Fig. 1in RGB-space

Figure 6. KLT-basel channes of Fig. 2 in RGB-space

Figure 7. KLT-basel channes of Fig. 3in RGB-space

Figure4. Image Brick.0001.ppn from VisTex. Figure 8. KLT-basel channes of Fig. 4in RGB-space



